256 research outputs found

    Gate Delay Fault Test Generation for Non-Scan Circuits

    Get PDF
    This article presents a technique for the extension of delay fault test pattern generation to synchronous sequential circuits without making use of scan techniques. The technique relies on the coupling of TDgen, a robust combinational test pattern generator for delay faults, and SEMILET, a sequential test pattern generator for several static fault models. The approach uses a forward propagation-backward justification technique: The test pattern generation is started at the fault location, and after successful ÂżlocalÂż test generation fault effect propagation is performed and finally a synchronising sequence to the required state is computed. The algorithm is complete for a robust gate delay fault model, which means that for every testable fault a test will be generated, assuming sufficient time. Experimental results for the ISCAS'89 benchmarks are presented in this pape

    Olfactory Performance as an Indicator for Protective Treatment Effects in an Animal Model of Neurodegeneration

    Get PDF
    Background: Neurodegenerative diseases are often accompanied by olfactory deficits. Here we use a rare neurovisceral lipid storage disorder, Niemann–Pick disease C1 (NPC1), to illustrate disease-specific dynamics of olfactory dysfunction and its reaction upon therapy. Previous findings in a transgenic mouse model (NPC1-/-) showed severe morphological and electrophysiological alterations of the olfactory epithelium (OE) and the olfactory bulb (OB) that ameliorated under therapy with combined 2-hydroxypropyl-ß-cyclodextrin (HPßCD)/allopregnanolone/miglustat or HPßCD alone.Methods: A buried pellet test was conducted to assess olfactory performance. qPCR for olfactory key markers and several olfactory receptors was applied to determine if their expression was changed under treatment conditions. In order to investigate the cell dynamics of the OB, we determined proliferative and apoptotic activities using a bromodeoxyuridine (BrdU) protocol and caspase-3 (cas-3) activity. Further, we performed immunohistochemistry and western blotting for microglia (Iba1), astroglia (GFAP) and tyrosine hydroxylase (TH).Results: The buried pellet test revealed a significant olfactory deterioration in NPC1-/- mice, which reverted to normal levels after treatment. At the OE level, mRNA for olfactory markers showed no changes; the mRNA level of classical olfactory receptor (ORs) was unaltered, that of unique ORs was reduced. In the OB of untreated NPC1-/- mice, BrdU and cas-3 data showed increased proliferation and apoptotic activity, respectively. At the protein level, Iba1 and GFAP in the OB indicated increased microgliosis and astrogliosis, which was prevented by treatment.Conclusion: Due to the unique plasticity especially of peripheral olfactory components the results show a successful treatment in NPC1 condition with respect to normalization of olfaction. Unchanged mRNA levels for olfactory marker protein and distinct olfactory receptors indicate no effects in the OE in NPC1-/- mice. Olfactory deficits are thus likely due to central deficits at the level of the OB. Further studies are needed to examine if olfactory performance can also be changed at a later onset and interrupted treatment of the disease. Taken together, our results demonstrate that olfactory testing in patients with NPC1 may be successfully used as a biomarker during the monitoring of the treatment

    Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions

    Get PDF
    In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions

    Improved methods using the reverse transcriptase polymerase chain reaction to detect tumour cells

    Get PDF
    Reverse transcriptase polymerase chain reaction (RT-PCR) is increasingly used to detect small numbers of circulating tumour cells, though the clinical benefit remains controversial. The largest single contributing factor to the controversy of its value is the different approaches to sample processing. The aim of this study was to compare the sensitivity and reproducibility of RT-PCR for the detection of tumour cells after four commonly used different methods of sample processing. Using RT-PCR, one tumour cell spiked in 2 ml of whole blood was detected after analysis of separated mononuclear cell RNA, whole blood total or poly-A+RNA. No false positives were identified with any method. However, the reproducibility of tumour cell detection was reduced after isolation of the mononuclear cell fraction. Only analysis of poly-A+RNA had a sensitivity of 100% in all the cell spiking experiments. In patient blood samples, analysis of poly-A+RNA increased the number of blood samples positive for tyrosine hydroxylase (TH) mRNA compared with those positive after analysis of total RNA. This may reflect high levels of cDNA reducing the efficiency of the PCR. Isolation of poly-A+RNA increases the sensitivity and reproducibility of tumour cell detection in peripheral blood. © 1999 Cancer Research Campaig

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    Get PDF
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2ÎłR_{2\gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20°\approx 20\degree to 80°80\degree. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°12\degree, as well as symmetric M{\o}ller/Bhabha calorimeters at 1.29°1.29\degree. A total integrated luminosity of 4.5~fb−1^{-1} was collected. In the extraction of R2ÎłR_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2ÎłR_{2\gamma}, presented here for a wide range of virtual photon polarization 0.456<Ï”<0.9780.456<\epsilon<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table

    Microscopic dynamics in liquid metals: the experimental point of view

    Full text link
    The experimental results relevant for the understanding of the microscopic dynamics in liquid metals are reviewed, with special regards to the ones achieved in the last two decades. Inelastic Neutron Scattering played a major role since the development of neutron facilities in the sixties. The last ten years, however, saw the development of third generation radiation sources, which opened the possibility of performing Inelastic Scattering with X rays, thus disclosing previously unaccessible energy-momentum regions. The purely coherent response of X rays, moreover, combined with the mixed coherent/incoherent response typical of neutron scattering, provides enormous potentialities to disentangle aspects related to the collectivity of motion from the single particle dynamics. If the last twenty years saw major experimental developments, on the theoretical side fresh ideas came up to the side of the most traditional and established theories. Beside the raw experimental results, therefore, we review models and theoretical approaches for the description of microscopic dynamics over different length-scales, from the hydrodynamic region down to the single particle regime, walking the perilous and sometimes uncharted path of the generalized hydrodynamics extension. Approaches peculiar of conductive systems, based on the ionic plasma theory, are also considered, as well as kinetic and mode coupling theory applied to hard sphere systems, which turn out to mimic with remarkable detail the atomic dynamics of liquid metals. Finally, cutting edges issues and open problems, such as the ultimate origin of the anomalous acoustic dispersion or the relevance of transport properties of a conductive systems in ruling the ionic dynamic structure factor are discussed.Comment: 53 pages, 41 figures, to appear in "The Review of Modern Physics". Tentatively scheduled for July issu

    The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice

    Get PDF
    Modulation of tumour cell growth by tumour-infiltrating leucocytes is of high importance for the biological behaviour of malignant neoplasms. In melanoma, tumour-associated macrophages (TAM) and tumour-infiltrating lymphocytes (TIL) are of particular interest as inhibitors or enhancers of cell growth. Recruitment of leucocytes from the peripheral blood into the tumour site is mediated predominantly by chemotaxins, particularly by the group of chemokines

    Measurement of the parity violating asymmetry in the quasielastic electron-deuteron scattering and improved determination of the magnetic strange form factor and the isovector anapole radiative correction

    Get PDF
    A new measurement of the parity-violating asymmetry in the electron-deuteron quasielastic scattering for backward angles at ⟹Q[superscript 2]⟩=0.224 (GeV/c)[superscript 2], obtained in the A4 experiment at the Mainz Microtron accelerator (MAMI) facility, is presented. The measured asymmetry is A[subscript PV][superscript d]=(-20.11±0.87[subscript stat]±1.03[subscript sys])×10[superscript -6]. A combination of these data with the proton measurements of the parity-violating asymmetry in the A4 experiment yields a value for the effective isovector axial-vector form factor of G[subscript A][superscript e,(T=1)]=-0.19±0.43 and R[subscript A][superscript e(T=1),anap] =-0.41±0.35 for the anapole radiative correction. When combined with a reanalysis of measurements obtained in the G0 experiment at the Thomas Jefferson National Accelerator Facility, the uncertainties are further reduced to G[subscript M][superscript s]=0.17±0.11 for the magnetic strange form factors, and R[subscript A][superscript (T=1),anap]=-0.54±0.26.Deutsche Forschungsgemeinschaf
    • 

    corecore